首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4630篇
  免费   469篇
  2021年   53篇
  2020年   44篇
  2019年   55篇
  2018年   56篇
  2017年   79篇
  2016年   88篇
  2015年   146篇
  2014年   190篇
  2013年   202篇
  2012年   277篇
  2011年   257篇
  2010年   184篇
  2009年   167篇
  2008年   229篇
  2007年   207篇
  2006年   190篇
  2005年   205篇
  2004年   211篇
  2003年   204篇
  2002年   166篇
  2001年   181篇
  2000年   149篇
  1999年   146篇
  1998年   79篇
  1997年   81篇
  1996年   57篇
  1995年   45篇
  1994年   64篇
  1993年   45篇
  1992年   86篇
  1991年   73篇
  1990年   72篇
  1989年   71篇
  1988年   57篇
  1987年   41篇
  1986年   40篇
  1985年   67篇
  1984年   43篇
  1983年   35篇
  1982年   39篇
  1981年   26篇
  1980年   25篇
  1979年   42篇
  1978年   23篇
  1977年   23篇
  1976年   23篇
  1974年   29篇
  1973年   22篇
  1972年   22篇
  1971年   20篇
排序方式: 共有5099条查询结果,搜索用时 828 毫秒
91.
92.
To further elucidate the molecular basis of the selective damage to various brain regions by thiamin deficiency, changes in enzymatic activities were compared to carbohydrate flux through various pathways from vulnerable (mammillary bodies and inferior colliculi) and nonvulnerable (cochlear nuclei) regions after 11 or 14 days of pyrithiamin-induced thiamin deficiency. After 11 days,large decreases (–43 to –59%) in transketolase (TK) occurred in all 3 regions; 2-ketoglutarate dehydrogenase (KGDHC) declined (–45%), but only in mammillary bodies; pyruvate dehydrogenase (PDHC) was unaffected. By day 14, TK remained reduced by 58%–66%; KGDHC was now reduced in all regions (–48 to –55%); PDHC was also reduced (–32%), but only in the mammillary bodies. Thus, the enzyme changes did not parallel the pathological vulnerability of these regions to thiamin deficiency.14CO2 production from14C-glucose labeled in various positions was utilized to assess metabolic flux. After 14 days, CO2 production in the vulnerable regions declined severely (–46 to 70%) and approximately twice as much as those in the cochlear nucleus. Also by day 14, the ratio of enzymatic activity to metabolic flux increased as much as 56% in the vulnerable regions, but decreased 18 to 30% in the cochlear nuclei. These differences reflect a greater decrease in flux than enzyme activities in the two vulnerable regions. Thus, selective cellular responses to thiamin deficiency can be demonstrated ex vivo, and these changes can be directly related to alterations in metabolic flux. Since they cannot be related to enzymatic alterations in the three regions, factors other than decreases in the activity of these TPP-dependent enzymes must underlie selective vulnerability in this model of thiamin deficiency.Abbreviations KGDHC 2-ketoglutarate dehydrogenase complex EC 1.2.4.2., EC 2.3.1.61, EC 1.6.4.3. - PDHC pyruvate dehydrogenase complex EC 1.2.4.2., EC 2.3.1.12, EC 1.6.4.3 - TK transketolase (EC 2.2.1.1) - TPP thiamin pyrophosphate  相似文献   
93.
Cattle can be vaccinated against the tick Boophilus microplus by inducing an immunologic reaction against Ag in the tick gut. The uptake of antibody during feeding leads to severe damage to the parasite. One of the responsible tick gut Ag has now been purified and characterized: the Bm86 Ag. It is a membrane-bound glycoprotein present in very low abundance in extracts of partially engorged adult female ticks. It has an apparent m.w. of 89,000, an isoelectric point of 5.1 to 5.6 and an affinity for wheat germ lectin. Microgram amounts of this Ag are able to induce effective protection in cattle against the parasite, as shown by the decreased survival of ticks on vaccinated cattle and a reduction in engorgement weights and egg laying capacity of the survivors. Antisera to the Ag react with the surface of digest cells in the tick gut. As a result of the reaction with antibody, the endocytotic activity of these cells, which is a critical step in bloodmeal digestion in this tick, is strongly and rapidly inhibited. A number of peptides from this Ag, produced by digestion of the reduced and alkylated protein with endoproteinase lys-C, have been sequenced. One peptide has significant amino acid sequence homology with the epidermal growth factor precursor and a second peptide has homology with a putative protective antigen from Plasmodium falciparum.  相似文献   
94.
Area expansion rate, partitioning of photosynthetically fixed carbon, and levels of fructose 2,6-bisphosphate (fru-2,6-P2) were determined in individual parts of developing leaves of sweet pepper (Capsicum annuum L.). The base was rapidly expanding and allocated less carbon to sucrose synthesis in comparison to the leaf tip, where expansion had almost stopped. The change in leaf expansion rate and carbon partitioning happened gradually. During day time levels of fru-2,6-P2 were consistently higher in the leaf base than in the leaf tip. Leaf expansion rate and carbon partitioning were closely related to day time levels of fru-2,6-P2, suggesting that fru-2,6-P2 is an important factor in adjustment of metabolism during sink-to-source transition of leaf tissue. The levels of fru-2,6-P2 changed markedly after a dark-to-light transition in the leaf base, but not in the leaf tip, suggesting that regulatory systems based on fru-2,6-P2 are different in sink and source leaf tissue. During the period upon dark-to-light transition the variations in level of fru-2,6-P2 did not show a close correlation to changes in the carbon partitioning, until the metabolism had reached a steady state.  相似文献   
95.
The induction of mutants at the heterozygous tk locus by X radiation was found to be dose-rate dependent in L5178Y-R16 (LY-R16) cells, but very little dose-rate dependence was observed in the case of strain L5178Y-S1 (LY-S1), which is deficient in the repair of DNA double-strand breaks. Induction of mutants by X radiation at the hemizygous hprt locus was dose-rate independent for both strains. These results are in agreement with the hypothesis that the majority of X-radiation-induced TK-/- mutants harbor multilocus deletions caused by the interaction of damaged DNA sites. Repair of DNA lesions during low-dose-rate X irradiation would be expected to reduce the probability of lesion interaction. The results suggest that in contrast to the TK-/- mutants, the majority of mutations at the hprt locus in these strains of L5178Y cells are caused by single lesions subject to dose-rate-independent repair. The vast majority of the TK-/- mutants of strain LY-R16 showed loss of the entire active tk allele, whether the mutants arose spontaneously or were induced by high-dose-rate or low-dose-rate X irradiation. The proportion of TK-/- mutants with multilocus deletions (in which the products of both the tk gene and the closely linked gk gene were inactivated) was higher in the repair-deficient strain LY-S1 than in strain LY-R16. However, even though the mutant frequency decreased with dose rate, the proportion of mutants showing inactivation of both the tk and gk genes increased with a decrease in dose rate. The reason for these apparently conflicting results concerning the effect of DNA repair on the induction of extended lesions is under investigation.  相似文献   
96.
Depth distributions of O2 respiration and denitrification activity were studied in 1- to 2-mm thick biofilms from nutrient-rich Danish streams. Acetylene was added to block the reduction of N2O, and micro-profiles of O2 and N2O in the biofilm were measured simultaneously with a polarographic microsensor. The specific activities of the two respiratory processes were calculated from the microprofiles using a one-dimensional diffusion-reaction model. Denitrification only occurred in layers where O2 was absent or present at low concentrations (of a fewM). Introduction of O2 into deeper layers inhibited denitrification, but the process started immediately after anoxic conditions were reestablished. Denitrification activity was present at greater depth in the biofilm when the NO3 concentration in the overlying water was elevated, and the deepest occurrence of denitrification was apparently determined by the depth penetration of NO3 . The denitrification rate within each specific layer was not affected by an increase in NO3 concentration, and the half-saturation concentration (Km) for NO3 therefore considered to be low (<25M). Addition of 0.2% yeast extract stimulated denitrification only in the uppermost 0.2 mm of the denitrification zone indicating a very efficient utilization of the dissolved organic matter within the upper layers of the biofilm.  相似文献   
97.
Iron overload of the liver by trimethylhexanoylferrocene in rats.   总被引:3,自引:0,他引:3  
Iron-deficient female Wistar rats were fed a diet, which contained 0.5% trimethylhexanoylferrocene, over a 56-week period. This dietary iron loading resulted in a progressive siderosis and enlargement of the liver with a maximum iron content of 947.0 +/- 148.0 mg (vs. 0.07 +/- 0.04 mg in iron deficiency) and a maximum organ weight of 39.4 +/- 6.6 g (vs. 6.9 +/- 1.4 g in iron-deficient control rats). Up to 43 weeks, whole liver iron rose by increase in iron concentration (max. 28.0 +/- 6.1 mg/g wet weight, w.w.) as well as by enlargement of the organ. Afterwards whole liver iron increased solely by ongoing hepatomegaly. At the commencement of iron loading, stainable iron was almost exclusively stored by hepatocytes equally throughout all areas of the liver lobule. Later, the distribution of iron-loaded hepatocytes became strikingly periportal, and, in addition, Kupffer cells as well as sinus-lining endothelia began to store iron. Animals with a liver iron concentration of more than 10.4 +/- 0.75 mg/g w.w. showed no further increase in ferritin and haemosiderin within hepatocytes. Iron-burdened Kupffer cells/macrophages, however, accumulated permanently, hereby forming intrasinusoidal and portal siderotic nodules and areas. First signs of liver damage such as necrosis of single hepatocytes and mild fibrosis began at a liver iron concentration of 14.7 +/- 1.4 mg/g w.w. With advancement of iron loading, focal necrosis of hepatocytes and iron-burdened macrophages took place, and significant perisinusoidal as well as portal fibrosis developed. Cirrhosis, however, the final stage of impairment in iron overload of the liver in humans, could not be induced in this animal model up to now.  相似文献   
98.
The expression of opioid genes was examined in isolated populations of glial cells in primary culture. Northern blot analysis of purified type I astrocytes, oligodendrocytes and mixed oligodendrocyte-type-2-astrocyte lineage cells derived from cerebral cortex demonstrated robust expression of proenkephalin mRNA exclusively in type I astrocytes. The expression of proenkephalin mRNA was stimulated by the beta-adrenergic agonist isoproterenol, and 8-(4-chlorophenyl thio)adenosine 3'-5'-cyclic monophosphate (cpt-cAMP). Both of these compounds regulated a proenkephalin-chloramphenicol acetyltransferase fusion gene transiently transfected into type I astrocytes. HPLC and immunoassay of the cell culture media revealed significant levels of unprocessed proenkephalin secreted by the cell and this secretion was stimulated by isoproterenol and cpt-cAMP. The relatively high levels of proenkephalin expressed suggest that enhanced expression in astrocytes may be important during neural development, in trauma-induced gliosis and in neuroimmune interactions.  相似文献   
99.
Saccharomyces cerevisiae has two highly homologous genes, FKS1 and FKS2, which encode interchangeable putative catalytic subunits of 1,3-beta-glucan synthase (GS), an enzyme that synthesizes an essential polymer of the fungal cell wall. To determine if GS in Aspergillus species is similar, an FKS homolog, fksA, was cloned from Aspergillus nidulans by cross-hybridization, and the corresponding protein was purified. Sequence analysis revealed a 5,716-nucleotide coding region interrupted by two 56-bp introns. The fksA gene encodes a predicted peptide of 229 kDa, FksAp, that shows a remarkable degree of conservation in size, charge, amino acid identity, and predicted membrane topology with the S. cerevisiae FKS proteins (Fksps). FksAp exhibits 64 and 65% identity to Fks1p and Fks2p, respectively, and 79% similarity. Hydropathy analysis of FksAp suggests an integral membrane protein with 16 transmembrane helices that coincide with the transmembrane helices of the Saccharomyces Fksps. The sizes of the nontransmembrane domains are strikingly similar to those of Fks1p. The region of FksAp most homologous to the Saccharomyces FKS polypeptides is a large hydrophilic domain of 578 amino acids that is predicted to be cytoplasmic. This domain is 86% identical to the corresponding region of Fks1p and is a good candidate for the location of the catalytic site. Antibodies raised against a peptide derived from the FksAp sequence recognize a protein of approximately 200 kDa in crude membranes and detergent-solubilized active extracts. This protein is enriched approximately 300-fold in GS purified by product entrapment. Purified anti-FksAp immunoglobulin G immunodepletes nearly all of the GS activity in crude or purified extracts when Staphylococcus aureus cells are used to precipitate the antibodies, although it does not inhibit enzymatic activity when added to extracts. The purified GS is inhibited by echinocandins with a sensitivity equal to that displayed by whole cells. Thus, the product of fksA is important for the activity of highly purified preparations of GS, either as the catalytic subunit itself or as an associated copurifying subunit that mediates susceptibility of enzymatic activity to echinocandin inhibition.  相似文献   
100.
In vitro infection of insect cells with baculoviruses is increasingly considered a viable means for the production of biopesticides, recombinant veterinary vaccines, and other recombinant products. Batch fermentation processes traditionally employ intermediate to high multiplicities of infection necessitating two parallel scale-up processes-one for cells and one for virus. In this study, we consider the use of multiplicities of infection as low as 0.0001 plaque-forming units per cell, a virus level low enough to enable infection of even large reactors (e.g., 10 m(3)) directly from a frozen stock. Using low multiplicities in the Sf9/beta-gal-AcNPV system, recombinant protein titers comparable with the maximum titer observed in high multiplicity infections were achieved. Cultures yielding the maximum titer were characterized by reaching a maximum cell density between 3 and 4 x 10(9) cell L(-1). This optimal cell yield did not depend on the multiplicity of infection, supporting the existing view that batch cultures are limited by availability of substrate. Up to a certain cell density, product titer will increase almost linearly with availability of biocatalyst, that is, cells. Beyond this point any further cell formation comes at the expense of final product titer. Low multiplicity infections were found not to cause any significant dispersion of the protein production process. Hence, product stability is not a major issue of concern using low multiplicities of infection. The sensitivity to initial conditions and disturbances, however, remains an issue of concern for the commercial use of low multiplicity infections. (c) 1996 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号